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Abstract

In this work, we present a novel approach to analyze crowd behavior
at various levels of granularity − individual, group and global. We
first model the collective motion of the agents present in the scene by
a first order dynamical system. The model learns the spatio-temporal
interaction pattern of the crowd which is further analyzed for group
detection. The groups are identifiable from the eigenvectors of the
interaction matrix of the model and can be recovered by employing
a variant of spectral clustering on the eigenvectors. We show that
while eigenvectors detect groups, the eigenvalues characterize various
group activities such as stationary, walking, splitting and approaching.
Finally we classify a crowd video in one of the eight categories by
employing a random forest. As an application, the model is used to
predict personal space violation.

1 Introduction

Understanding human behavior at an individual level, at a group level and
at a crowd level in different scenarios has always attracted the researchers.
The variability and complexity in the behavior make it a highly challenging
task. However, this decade is witnessing a huge interest of researchers in the
area of crowd motion analysis due to its various applications in surveillance,
safety, public place management, hazards prevention, and virtual environ-
ments. This interest has resulted in many interesting papers in the area.
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We are aware of at least four survey papers on the subject of crowd anal-
ysis that indicate the amount of attention, it has drawn in this and the
previous decade [5],[9],[4],[10]. The latest survey paper [5] by Chang et al.
encapsulates the recent works published after 2009, covering topics of mo-
tion pattern segmentation, crowd behavior and anomaly detection. Thida et
al. [9] provide a review on macroscopic and microscopic modeling methods.
They also present a critical survey on crowd event detection. Julio et al.
cover various vision techniques applicable to crowd analysis such as track-
ing, density estimation, and computer simulation [4]. Zhan et al. discuss
various vision based techniques used in crowd analysis. They also discuss
crowd analysis from the perspective of different disciplines - psychology, so-
ciology and computer graphics [10]. At the top level, the techniques used in
crowd motion analysis can be divided into two major classes − holistic and
particle based. The holistic methods consider crowd as a single entity and
analyze the overall behavior. These methods fail to provide much insight
at an individual or intermediate level. On the other hand, particle based
methods consider crowd as a collection of individuals or groups. But their
performance degrades with the increase in crowd density due to occlusion
and tracking problems.

(a) Stationary group (b) Walking

(c) Approaching (d) Splitting

(e) Mixed crowd (f) Uniform crowd

Figure 1: (a) - (d) show groups with different group activities, (e) and (f)
give examples of structured and unstructured crowd. Tracklets for some of
the agents over past few frames are also shown. Each color represents a group
(Best viewed in color). The videos are from BEHAVE [1] and CUHK [8]
datasets.
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We believe that a moderately dense crowd consists of various groups.
We define a group as a set of individuals having some sort of interaction.
Spatial proximity is required to form a group; if there are agents with a
similar motion pattern but are far away from each other, they do not form
a group as per our definition. Each group has its own set of goals that
leads to various interaction patterns among the members of the group. The
collective behavior of these constituent groups identifies the global crowd
behavior which can vary from a highly structured to a totally unstructured
pattern. In case of a structured crowd, for example − marching of soldiers,
all groups are in coordination and share the same goal (see Fig.1f); whereas
in an unstructured crowd, for example − at railway station or at a shopping
complex, there are multiple groups with different goals (see Fig.1e). We
are interested in understanding these different types of crowd behaviors at
various levels.

2 Mathematical formulation

We define a group as a set of agents having spatial proximity and some sort
of interaction. In general, such interactions are complex and non-linear in
nature. We approximate these interactions locally in time by a first order
dynamical model. Note that we refer by agent an individual entity in the
crowd.

2.1 Proposed interaction model

We model the collective relationship among the agents by a first order ho-
mogeneous system. Our hypothesis is based on the intuition that each
agent takes into consideration (i) the movement of other agents present
nearby and (ii) her/his desired goal, while taking the next step. The
model relates the next positions of the agents to the current positions. Let
x(k) = [x1(k), x2(k), ..., xN (k)]T , then

x(k + 1) = Ax(k), (1)

where A ∈ RN×N , N is the total number of agents and xi(k) ∈ R is the
location of ith agent at time instant k along x-axis. We call A as the inter-
action matrix which captures the evolution of an agent as a function of all
agents present in the scene. Note that A has no assumption on its form and
entries. It need not be symmetric i.e. agent i may not depend on agent j
in the same way as agent j depends on agent. For example, consider a case
where agent i is stationary and agent j approaches him/her. Since their be-
haviors are not symmetric with respect to each other, intuitively that means
aij 6= aji.

3
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In this paper, it is assumed that the motion along x and y directions are
independent and hence can be analyzed independently. The corresponding
model along y direction is y(k + 1) = By(k). In the rest of the paper, we
discuss the solution for matrix A noting this fact and the same process is
also carried out for B. We expect matrices A and B to be dependent on
crowd motion. Since crowd behavior might change with time, the inter-
action matrix is time varying in nature, that is Ak . Assuming A has N
independent eigenvectors, the general solution to Eq.(1) is given as

x(k) =

N∑
i=1

ciλ
k
i vi, (2)

where λi is the ith eigenvalue, vi is the corresponding normalized eigen-
vector and ci is the corresponding constant coefficient that depends on the
initial condition. Different values of λi and vi generate various motion pat-
terns for an agent. These patterns can be associated to different motion
tracks generated by an agent while walking, approaching, splitting or sta-
tionary.

2.2 Estimation of interaction matrix A

The matrix A at any time instant is learned from the immediate past tra-
jectory data of all the agents in a least squares framework. We update A
with each incoming frame as interaction patterns may change over the time.
In addition, sudden changes in these interactions are unlikely. Therefore
it is desired that the entires of A do not change drastically in consecutive
time instants − we assume them to be varying smoothly over time. We
incorporate this constraint by minimizing l2 norm of the difference between
current interaction matrix Ak and previous estimate at (k − 1)th instant .
Furthermore for crowded scenes, it is unlikely that an agent’s motion de-
pends on all the agents present in the scene. We capture sparsity in Ak by
minimizing l1 norm of Ak. Adding these constraints to the cost function,
the final formulation at kth time instant becomes:

A∗k = arg min
Ak∈RN×N

{
||AkX

k−1
k−m −Xk

k−m+1||22

+λ1||Ak −Ak−1||22 + λ2||Ak||1
}
, (3)

where Xj
i ∈ RN×m contains the positions of all N agents from ith to jth

frames concatenated together, Ak−1 is the estimate at the previous frame
and λ1 and λ2 are appropriate regularization parameters. Note that we will
use A instead of Ak for notational convenience.

We use m = 2.5N past positions to solve this optimization problem.
Therefore the interaction pattern is assumed to remain constant over 2.5N .

4
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Figure 2: Spatial neighborhoods around agents a and c are represented as
circles around them. There are a total of 20 agents in the scene out of which
only 8 are neighbors of a. Estimation of elements of row of A corresponding
to agent a, considering all agents present in the scene requires 2.5 ∗ 20 = 50
previous video frames. While the use of neighborhood constraint reduces
this to 2.5 ∗ 9 ≈ 23 frames.

However, a large N leads to two major problems: (i) longer trajectories are
required to learn the interaction matrix and (ii) the interaction may not
remain constant over 2.5N past positions. To address these problems, we
identify spatial neighbors of each agent and learn only the corresponding
entries in the matrix, others being zero. The neighborhood is defined as
follows − the agent a is a neighbor to the agent b if dist(a,b) < Rb. The
intuition is that it is unlikely that far away agents influence the motion of an
agent. The advantage is that the shorter trajectories are now sufficient as
the number of entries of A to be learned are lesser. Further, there could be
an agent within the spatial proximity of another agent but there may not be
any interaction between them. Hence it is required that the corresponding
entry in the matrix A should be zero. This is enforced by adding sparsity
constraint in Eq. 3. In essence, spatial proximity is taken into considera-
tion by employing neighborhood based selection while temporal proximity
is achieved by Eq. 3.

For an illustration, refer Fig.2. There are total of 20 agents present in
the scene. Estimation of row of matrix A corresponding to agent a requires
50 previous frames whereas neighborhood based estimation reduces this to
23. Also consider a case where agents a and c are not in spatial proximity
of each other but interact via agent b (for that matter, a chain of other
agents), then it is captured by the row of A corresponding to agent b since
it has both the agents in its neighborhood. Note that we estimate matrix A
in a row-wise manner since the number of entries to be estimated is different
for each agent due to neighborhood constraint. We use L1General package
developed by Schmidt [7] for solving L1-regularization problems.

5
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Figure 3: The figure compares the prediction of personal space in 2D and
3D using the proposed model. Best viewed in color

3 Prediction of personal space violation

The model is used to predict the future locations of the agents and hence can
be used for predicting personal space violation. Firstly, human detection is
done using deformable part based model [3] and each individual is repre-
sented by a point. These points are tracked using Lukas-Kanade tracker.
The videos for this experiment were captured in the campus premises. Since
the camera was calibrated and same height was assumed for all the agents,
the 3D coordinates were estimated. The parameters of the motion matrix
(discussed before) are estimated continuously. The trajectories are predicted
and analysis is done for predicting personal space prediction. See Fig 3 for
an example.

4 Group detection

In this section, we discuss the algorithm for identifying the groups presnt
in the scene by analyzing the interaction matrix A. From Eq. 2, notice
that if any two rows of eigenvector matrix are similar, the corresponding
agents belong to same group. Hence we define a mapping for ith agent
as f(xi) : xi ∈ R → zi = (v1i, v2i, . . . , vri)

T ∈ Rr×1 where vji is the ith

entry of jth eigenvector of interaction matrix A and r is the number of
significant eigenvectors. A clustering algorithm is applied on the points
{zi},∀i = 1, 2, . . . , N . Since the clustering algorithm runs on the compo-
nents of eigenvectors, this algorithm falls in the category of spectral clus-
tering [6]. The number of groups in unknown, so we apply a threshold
based clustering. The adaptive threshold used for ith point is c|zi|, where
c is found empirically. Also we consider only significant eigenvectors (with
|λ| ≥ 0.90, which was found empirically) of A for group detection since the
response from the eigenvectors with |λ| < 0.9 dies down to an insignificant
level immediately.

6
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5 Group activity identification

While the eigenvectors identify the groups, the eigenvalues determine the
activity of a group. We employ the same model mentioned in Eq. 1 for
the group G to estimate its interaction matrix AG. We do not use the
submatrix formed by the agents of the group G in the previously learned
matrix A to get AG. This is to avoid any possible interference from the
outside agents in the estimation and get a refined matrix for the group.
Let xG(k) = [xG1 (k), xG2 (k), . . . , xGM (k)]T , where M is the cardinality of the
group G and xGi (k) is the position of ith agent of the group at time instant
k. To learn matrix AG at kth time instant, we define a similar optimization
framework as follows, where the second term enforces temporal continuity
in the activity but unlike Eq. 3, there is no need for sparsity constraint.
Therefore,

AG∗
k = arg min

AG
k ∈RM×M

{
||AG

kX
k−1
k−m −Xk

k−m+1||22

+λ||AG
k −AG

k−1||22
}

(4)

Assuming AG to be again diagonalizable, the general solution is

xG(k) =
M∑
i=1

diλ
′k
i ui, (5)

where |λ′1| ≥ |λ′2| . . . ≥ |λ′M |. Now we state how eigenvalues determine
various activities:

1. Stationary: A group is stationary when |λ′i| ∈ {0, 1}, ∀i. To cater
for the noisy measurements, we keep a positive threshold i.e. if |λ′i| < θ
(say, θ = 0.6), the group is stationary.

2. Walking: Agents are walking or running together if |λ′1| > 1 and
their corresponding entries in u1 are closer. The fact that λ′1 > 1,
corresponds to walking or running. The other fact that u1 has similar
values suggests that agents are together.

3. Approaching: A few or all the agents of the group are approaching to
meet if λ′i = 1 and 0 < λ′j ≤ 1, ∀i 6= j. The eigenvectors corresponding
to λ′ = 1 indicate the final location of meeting and 0 < λ′ < 1 suggest
approaching behavior.

4. Splitting: A few or all the agents are splitting away from the group if
|λ′1| > 1 and u1 has different values corresponding to splitting agents.

7
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This group activity detection method is highly dependent on eigenvalues
and hence sensitive to perturbations in the measurements. To address this,
we define threshold bands for crucial values of eigenvalues. For example, if
0.995 < λ < 1.005, we consider λ to be 1 and so forth.

5.1 Atomic activity detection

This algorithm is extendable for identification of individual’s activity. For
an individual, we use the following model. Note that there is no longer a
activity called splitting as one needs at least two agents to define it.

x(k + 1) = λx(k) + b (6)

The solution is as follows:

x(k) =

{
λkx(0) + 1−λk

1−λ b, if λ 6= 1

x(0) + kb, if λ = 1
(7)

We identify following activities based on the value of λ:

1. Stationary: An agent is stationary if λ = 0 at the location given by
b.

2. Approaching: 0 < |λ| < 1 indicates that the agent is approaching to
the location b.

3. Walking: An agent is walking away from a reference point if |λ| ≥ 1.

Note that the group detection and activity recognition algorithms run
in x and y directions independently and results are combined together. For
example if Lx = [1, 1, 2] and Ly = [1, 2, 1] are the label vectors (indicating
groups) obtained in x and y directions respectively, the final label vector is
L = [1, 2, 3]. To identify the final group activity from the estimates along x
and y, we follow this priority sequence − Splitting >Walking > Approaching
> Stationary. That is if a group has splitting and approaching activities in
x and y directions respectively, the final group activity is splitting.

6 Crowd video classification

Ability to identify crowd behavior enables crowd management systems to
design and manage public places effectively to ensure safety and smooth
operation. The overall crowd behavior is determined by how each group
behaves. Depending on the synchronization among the groups, the behavior
of crowd varies from being structured to unstructured. In this section, we
define group level features that are useful for crowd video classification. We
classify crowd videos into 8 classes as defined by [8]. The dataset containing
474 video clips covers a variety of videos. The eight classes are as follows:

8
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C1 : Mixed crowd
C2 : Well organized crowd following mainstream:
C3 : Not well organized crowd following any mainstream
C4 : Crowd merge
C5 : Crowd split
C6 : Crowd crossing in opposite directions
C7 : Intervened escalator traffic
C8 : Smooth escalator traffic

We employ group level features that cover low-level details such as mo-
tion information to high-level information such as group activities. The
features are described as follows:

1. Group density (GD): It is the ratio of number of groups by the
total number of agents in the scene. The low value of GD indicates
highly structured crowd. For example, GD for a group of marching
soldiers is small whereas a mixed crowd has a higher group density.

2. Histogram of λmax: The histogram has three bins − λmax > 1,
λmax = 1 and λmax < 1, where λmax is the largest eigenvalue of the
interaction matrix for a group. The value at a particular bin is the
number of groups in a video clip having λmax as defined by that bin.
Left skewed histogram i.e. towards λmax > 1 indicates moving crowd
whereas right skewed histogram suggests more or less stationary crowd.

3. Histogram of direction: The motion direction of each member of
a group is calculated from its trajectory data and the mean direction
is assigned to the group. This histogram has eight bins covering 0◦ to
360◦ with a bin size of 45◦. The bin value is the number of groups
falling in that particular bin. The uniform histogram indicates mixed
crowd whereas skewed histogram indicates directional uniformity in
the crowd.

4. Histogram of group activity: This is an important feature in decid-
ing the overall activity. The histogram has 4 bins − walk, stationary,
approach, and split. The bin value is the number of groups performing
the particular activity in the scene.

Since the analysis is conducted independently in x and y directions; we
get two histograms for λmax, leading to final feature vector of length 1 + 2×
3 + 8 + 4 = 19. We use random forest (RF) as a classifier [2]. It consists of
multitude of decision trees that are trained from randomly sampled subsets
of training dataset (bootstrap aggregating). This bootstrapping increases
the performance by reducing the variance of the classifier. Also the split
at each node of a tree is decided by m features selected randomly out of n
features where m << n. We use RF to classify a crowd video by training it

9
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with the above mentioned features. The classification results are discussed
in next section.

7 Experiments and Results

We tested our algorithms on BEHAVE [1] and CUHK datasets [8] which
are quite common among the researchers for crowd analysis and group ac-
tivity detection . CUHK dataset is a comprehensive crowd video dataset
containing 474 video clips covering various crowd behaviors with varying
crowd density. BEHAVE dataset has video clips covering various types of
group activities.

7.1 Group detection

We tested group detection algorithm on 75 videos (covering all the different
scenarios) from CUHK dataset and 2 video clips (having duration of more
than 10 minutes in total) from BEHAVE dataset. We have excluded the
clips containing other activities such as fight. In case of videos from CUHK
dataset, we restricted our algorithm to run on around 60 longest tracks,
since some of the clips are too short to accommodate for an analysis of large
number of agents. We compared the proposed algorithm with other methods
on these selected agents. The ground truth for CUHK dataset was obtained
manually. Fig. 4 demonstrates a visual comparison for different scenarios

7.2 Crowd video classification

Since we update the interaction model with each incoming frame as ex-
plained in Section 6, we compute group level features at every time instant.
We collect features at regular intervals from the videos to create the feature
database. From each class, we randomly pick 70% feature vectors to train
the classifier and the remaining for testing. As discussed before, we use
random forest as a classifier with n = 17 and m = 4. We run the classifier
100 times with random splits of dataset for training and testing. The aver-
age accuracy obtained is 88%, a significant improvement over [8] where the
reported accuracy is 70%. The confusion matrix is shown in Fig. 5c. The
OOB error, which indicates generalized error, converges to a value less than
15% as shown in Fig. 5a. The importance plots, which show significance of
each group level feature in the classification are shown in 5b.

8 Conclusions

In this work, we presented a framework for analysis of medium dense crowd
videos at various levels. We proposed a first order dynamical system to

10
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(a) Proposed (b) Ground truth

Figure 4: Comparison of group detection results from our proposed method
in column (a) with the ground truth in column (b) for different types of
scenes. Videos are from CUHK dataset [8]. Best viewed in color.
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Figure 5: (a) Out of bag (OOB) error, (b) Importance plot for the features
and (c) Confusion matrix with categories represented as C1 to C8.

model agent trajectories collectively and subsequently demonstrated the ef-
fectiveness of this interaction model for group detection. We also show how
eigenvalues of the model characterize group activities. We then showed the
effectiveness of group level features in crowd video classification.
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